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Abstract

We consider the problem of coordinating autonomous agents that have to
perform a joint task. This joint task consists of a set of elementary tasks,
partially ordered by a set of precedence constraints. Each agent is assigned
(using some given task allocation protocol) a subset of the available tasks.
We assume that agents wish to be fully independent during the planning
process, yet they are dependent on each other because of the precedences
between tasks allocated to different agents.

In this paper we concentrate on the following coordination problem: how
to offer complete autonomy for the participating agents in planning their
part of the tasks, while at the same time guaranteeing that the individu-
ally constructed feasible plans (whatever they may be) are fully respected
in constructing the joint plan. As we will see, this problem comes down
to finding a minimal set of additional constraints (a coordination set) such
that after adding these constraints a combined plan for executing all tasks
can be achieved by simply joining whatever plans have been developed by
the individual agents. We show that this problem can be decomposed into
two subproblems: verifying that a given set of additional constraints is a
coordination set, i.e., allows agents to plan independently (the coordination
verification problem), and finding out whether a coordination set is of mini-
mal size (the minimal coordination problem).

We will show that the coordination verification problem alone is co-NP-
complete. In the general case, if the only dependencies are precedence con-
straints between tasks, the coordination problem is Σp

2-complete; if we also
allow simultaneity constraints between tasks (i.e., constraints specifying that
tasks may not be performed simultaneously), then the coordination problem
is Πp

3-complete.
Even rather simple cases of the coordination problem turn out to be

intractable and we show that it is very unlikely that constant-ratio approxi-
mation algorithms for this problem exist even if each agent has only a trivial
planning task to perform.



Chapter 1

Introduction

In this paper we study the computational complexity of coordinating a set
of autonomous planning agents. The multi-agent planning setting we choose
is deceptively simple: We assume that agents have work together on some
joint task T that consists of a number of elementary tasks tj. Furthermore,
these elementary tasks are allocated to agents using some unspecified task
assignment protocol such as e.g. discussed by Shehory and Kraus [5]. As in
their framework, elementary tasks assigned to (possibly different) agents may
be interrelated by a set of precedence constraints ti ≺ tj, requiring that ti
has to be completed before tj can start. Unlike in their framework, however,
(i) execution of the subset Ti of tasks assigned to agent Ai requires careful
planning of agent Ai and (ii) we assume that agents are autonomous planning
agents, that is, these agents do not want to be interfered during planning
by other agents, neither do they want to revise their plans after planning if
their plans turn out to be incompatible with the plans of other agents.

The precedence constraints between the tasks induce dependencies be-
tween the agents: if a task t, allocated to agent Aj, is preceded by a task t′

from a different agent Ai, then Aj is dependent on Ai. Clearly, to manage
these dependencies between agents, some form of coordination is required.
We are therefore faced with the following coordination problem: how to guar-
antee that, irrespective of the plans developed by these autonomous planning
agents, these plans can be combined into a feasible joint-agent plan without
the need to revise them?

Of course, plan coordination in multi-agent systems is not an entirely new
topic. In principle, following the literature we could try to solve this problem
in several ways: (i) Restrict the planning autonomy of the agents by commu-
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Figure 1.1: Parcels must be delivered between locations; a package can be
transferred from one truck to another at the depot.

nicating and negotiating about the inter-agent constraints during planning,
(cf. [2, 1]); (ii) Perform independent planning and integrate the possibly
incompatible plans (by applying replanning, if necessary). This approach
suggests approaching the coordination problem by studying and exploiting
(positive and negative) relationships between plans like [9]; Finally, we could
opt for (iii) finding a minimal set of additional problem constraints such
that adding them ensures complete planning autonomy by the agents and
guarantees that the result of simply combining the individual plans always
results in a feasible joint plan.

Obviously, the first two approaches mentioned above are less appropri-
ate in applications where the requirement of planning autonomy is strict:
competitive relations between the agents, for example, may simply prohibit
agents to reveal details of their plans to other agents. Therefore, in this pa-
per we focus on the third approach, where in the pre-planning phase, we try
to find a set of minimal constraints that guarantees that a simple joint plan
can be found that respects the individually developed plans.

Note that this approach, by separating coordination concerns from plan-
ning, also offers possibilities for upgrading current stand-alone planning tools:
by separating coordination from autonomous single-agent planning processes,
single-agent planning systems can be re-used for multi-agent planning prob-
lems.

To present a simple example to illustrate these ideas, we use a simple
logistic chain as a guiding example.

Example 1. We have a multi-agent planning problem where parcels have
to be transported between locations: a package p1 must be transported from
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location L1 to L4 and a package p2 that must be transported from L3 to L2 (see
Figure 1.1). We have two transportation agents: agent A1 handles locations
L1, L2 and the depot D, while agent A2 serves locations L3, L4 and D. Both
agents have to start and finish in the depot D. Transportation of package
p1 requires agent A1 to pick up the package at L1, but as location L4 is out
of A1’s region, he will only transport p1 as far as the depot D. From there,
agent A2 will drive the package to L4. Similarly, agent A2 will bring p2 to
the depot, but A1 must perform the final trip to L2.

Now agent A1 has to make a plan for carrying out the tasks t1 = (L1, D)
and t2 = (D, L2), while A2 has to make a plan for t3 = (L3, D) and t4 =
(D, L4). These tasks are interrelated: t1 has to be completed before t4 can
start and likewise t3 has to precede t2. Now each agent has to solve a route-
planning problem1, but is dependent upon the plan of the other agent. If
we allow both agents to plan independently, the two plans can easily become
incompatible: For example, if agent A1 would aim for the plan (visiting se-
quence) D − L2 − L1 −D to achieve his tasks t2 and t1, and A2 would aim
for the visiting sequence D − L4 − L3 − D, these plans cannot be combined
in a multi-agent plan achieving T : Clearly, to start its plan, agent A1 has
to wait in D until t3 has been accomplished by agent A2, but agent A2 can-
not complete this task before t1 has been completed by A1. Hence, trying to
execute the agent plans would result in a deadlock.

In the above example, it is not hard to see how the agents can be co-
ordinated: either agent A1 must perform its pre-depot task t1 before its
post-depot task t2, or agent A2 must perform its pre-depot task before start-
ing on its post-depot task. If, however, we scale up the problem to include
an arbitrary number of tasks, agents, and precedence constraints, then we
are faced with a very hard problem. In fact, in Section 3, we will prove that
the coordination(-solution) verification problem, which is to verify whether
a given set of additional restrictions allows agents to plan independently, is
co-NP-complete. This proof consists of reducing the NP-complete Path With
Forbidden Pairs problem to the complement of the coordination verification
problem.

In Section 4 we prove that the coordination problem itself, which is to find
a minimum set of constraints to allow independent planning, is Σp

2-complete.
In this case, the proof consists of reducing a quantified version of the path

1It is not difficult to see that even if all distances between locations are the same,
finding a shortest route plan is NP-hard.
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with forbidden pairs problem, which is Σp
2-complete, to the coordination

problem. This reduction can be extended to show that, if we also allow
simultaneity constraints, then the coordination problem is Πp

3-complete.
Not all coordination instances are equally hard, however, as there exist

subcases that are ‘only’ NP-complete. In Section 6, we will show that if
a coordination instance lacks certain structural characteristics, then it is in
NP.

In Section 7 we investigate the approximability of the coordination prob-
lem. Even for the case where each agent is restricted to having at most two
tasks to perform, the coordination problem is both NP-hard and hard to ap-
proximate, in the sense that (most likely) no constant-ratio approximations
exist. We can prove this by reducing the Feedback Vertex Set (FVS) problem
to this restricted version of the coordination problem, as FVS is NP-hard,
and no constant-ratio approximations have been found, despite considerable
research effort.
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Chapter 2

Problem Statement

A typical instance of the coordination problem consists of a partition T =
{T1, . . . , Tn} of a set of elementary tasks T = T1 ∪ · · · ∪ Tn (representing
a distribution of T over n agents A1, . . . , An), and a set E of precedence
constraints specifying a partial order on T .1 Usually, we will specify such an
instance as a tuple (T, G = (T, E) ) where T is the partitioning scheme and
G = (T, E) is a directed acyclic graph (dag). The subgraph Gi = (Ti, Ei) is
the subgraph of G generated by Ti and representing the set of tasks and the
set of intra-agent constraints for agent Ai. We define Ei as:

Ei = E+ ∩ (Ti × Ti)

where E+ is the transitive closure of E. The set of inter-agent constraints
Einter consists of all precedence constraints (t, t′) ∈ E, where t ∈ Ti, t′ ∈ Tj

and i 6= j.
An elementary task can be executed by a single agent. Executing its set

Ti of elementary tasks requires the agent Ai to make a plan. In Example 1,
such a plan consists of the specification of a visiting-sequence route e.g. D−
L2 − L1 − D for executing his tasks. Such a concrete plan, however, will
contain much more information about e.g. resources used by the plan than
is needed for coordination. Since we assume that agents are only dependent
upon each other through the precedence constraints between tasks, we are
only interested in the order in which an agent Ai plans to perform its set Ti of
tasks. Therefore, we consider only an abstract plan for agent Ai, derived from
its concrete plan, that specifies the order in which the tasks Ti are planned.

1More precisely, E is the transitive reduction of the precedence relation on T .

5



It is obvious that such an abstract plan should (i) satisfy the intra-agent
constraints Ei imposed on Ti and (ii) should specify a partial order on Ti.
Therefore, each such an abstract plan can be specified as an acyclic graph
GP

i = (Ti, Ei ∪ Êi), where Ei ∪ Êi extends the partial order specified by Ei.

Example 2. Continuing Example 1, let the concrete plans developed by the
agents A1 and A2 be given as the visiting sequences D − L2 − L1 − D and
D − L4 − L3 − D respectively. The abstract plans corresponding to these
concrete plans are GP

1 = ({t1, t2}, {(t2, t1)}) and GP
2 = ({t3, t4}, {(t4, t3)}),

respectively. Note that since G1 = ({t1, t2}, ∅) and G2 = ({t3, t4}, ∅), these
plans satisfy the intra-agent constraints.

It is easy to see that by developing (abstract) plans autonomously, the
feasibility of the combination of these plans cannot be guaranteed: as can
be seen from the example, although the plans may be individually feasible,
their combination results in an infeasible plan since the original set E of
precedence constraints together with the added constraints Ê = Ê1 ∪ Ê2 is
no longer acyclic.

Therefore, the coordination problem now can be stated as follows: how
to guarantee that, whatever constraints Êi that are added by individual
agents Ai in making their individually feasible plans, the resulting combined
precedence relation E ∪ Ê is still acyclic, where Ê = Ê1 ∪ · · · ∪ Ên.

As it turns out, a simpler problem is to check whether such a coordination
problem will occur in a coordination instance (T, G). This problem we call
the coordination verification problem:

Definition 2.1 (Coordination Verification Problem). The coordination
verification problem (CVP) is: given a coordination instance (T, G) with
G = (T,E) a dag and T = {T1, . . . , Tn} a partition of T , does it hold that,
for all sets of refinements Ê ⊆ T × T satisfying:

1. Ê = Ê1 ∪ · · · ∪ Ên where Êi ⊆ Ti × Ti for i = 1, . . . , n, and

2. for each i, the graph (Ti, Ei ∪ Êi) is acyclic,

the graph (T, E ∪ Ê) is acyclic?

Note that in a yes-instance of CVP, it holds that whatever locally acyclic
plans (partial orders) the agents Ai come up with, the result can be combined
into a feasible joint plan.
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If we are confronted with a no-instance (T, (T, E)) of the CVP problem,
it is easy to see that the only way to ensure the planning autonomy of the
participating agents is to come up with a set ∆ of additional constraints on
the set of tasks T such that (T, (T,E ∪ ∆)) is a yes-instance of the CVP-
problem. The coordination problem (CP), then, is the problem to find such
a set ∆ of minimum cardinality. The decision variant of this problem can be
specified as follows:

Definition 2.2 (Coordination Problem). The coordination problem (CP)
is: given a coordination instance (T, G) find a set of precedence constraints
∆ = ∆1 ∪ · · · ∪∆n with ∆i ⊆ Ti × Ti such that:

1. E ∪∆ is acyclic,

2. (T,E ∪∆) is a yes-instance of CVP, and

3. |∆| is minimal.

2.1 Planning Arcs

Before we start on the analysis of the complexity of the coordination problem,
we will first introduce the set of planning arcs that represent the freedom
agents have during planning. In particular, we need to define the set of all
possible (allowed) precedence constraints that can be added during planning,
that are also relevant for coordination; we will denote this set of planning
arcs by Êtot.

First, note that planning arcs must be contained within agents, i.e., Êtot ⊆⋃n
i=1 Ti×Ti. Second, we require agents to add only planning arcs that do not

directly lead to a local cycle. The addition of an arc e leads to a local cycle in
case e−1 is an existing precedence constraint. Hence, Êtot∩ [E−1]+ = ∅. Also,
of course, if an arc e is already in E, then we do not consider it a planning
arc either.

Finally, an arc is only relevant for coordination in case it can contribute to
an inter-agent cycle.2 Note that any inter-agent cycle must ‘enter’ an agent
at some task and ‘exit’ an agent through another task. The former task is in

2An inter-agent cycle C is a cycle in E ∪ Êtot that intersects the set of inter-agent
precedence constraints, i.e., C ∩ Einter 6= ∅.
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T in = dom(Einter), the latter is in T out = ran(Einter). Thus, we define Êtot

as follows:

Êtot =
n⋃

i=1

T in
i × T out

i \
(
E+ ∪ [E−1]+

)
The following proposition justifies restricting our attention to arcs in Êtot.

Proposition 2.3. If there exists a set Ê = {Ê1, . . . , Ên} such that

1. Ê = Ê1 ∪ · · · ∪ Ên where Êi ⊆ Ti × Ti for i = 1, . . . , n,

2. for each i, the graph (Ti, Ei ∪ Êi) is acyclic, and

3. the graph (T, E ∪ Ê) contains a cycle C,

then there exists a set Ê ′ ⊆ Êtot satisfying the same conditions.

Proof. Let C = e1 − · · · − em; note that in C, (sequences of) arcs in Einter

alternate with (sequences of) arcs in Ei ∪ Êi. We will now show how to form
the set Ê ′ by replacing all arcs in Êi with arcs in Êtot — if necessary.

Let ej − · · · − ek be a sequence in Ei ∪ Êi such that ej−1 and ek+1 are in
Einter. We distinguish two cases:

case 1: (dom(ej), ran(ek)) ∈ Ei. Clearly, (dom(ej), ran(ek)) ∈ E+; we can

choose Ê ′
i = ∅, as C is enabled by arcs in E.

case 2: (dom(ej), ran(ek)) 6∈ Ei; we can choose Ê ′
i = {êi = (dom(ej), ran(ek))}.

Note that êi ∈ Êtot:

1. (dom(ej), ran(ek)) ∈ T in × T out;

2. (dom(ej), ran(ek)) 6∈ E+;

3. (dom(ej), ran(ek)) 6∈ [E−1]+, since otherwise Ei ∪ Êi would have
been cyclic.

The set E ∪ Êtot represents the precedence relation E, augmented with
the set of arcs Êtot that represent the planning freedom of the agents. We
will call the associated directed graph G = (T, E ∪ Êtot) the coordination
graph.
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Chapter 3

Complexity of Coordination
Verification

The coordination-verification problem is to verify whether there cannot exist
a set of planning arcs that create an inter-agent cycle, while remaining locally
acyclic. It is easy to see that CVP is in co-NP.

Proposition 3.1. CVP is in co-NP.

Proof. A no-certificate consists of a set of planning arcs that creates an inter-
agent cycle. More specifically, a no-certificate is a set Ê satisfying properties
(i) and (ii) of Definition 2.1 that creates a cycle in the graph (T,E ∪ Ê).
Clearly, both properties and the cyclicity of (T, E ∪ Ê) can be verified in
polynomial time.

To prove that this problem is co-NP-complete, we will present a reduction
from the path with forbidden pairs problem.

Definition 3.2. The Path With Forbidden Pairs problem (PWFP) is: given
a tuple (G0, C, s, t) where G0 = (V, E0) a directed acyclic graph, C = {c1, c2, . . . , cn}
a set of pairs of arcs in E0, and two distinct nodes s and t in V , does there
exist a path from s to t using at most one arc from every cj ∈ C.

Specifically, we will reduce PWFP to the complement of the coordination-
verification problem. The complement of CVP, which we will call the Coordination-
Failure Detection problem (CFD) asks whether there does exist a set Ê sat-
isfying both conditions of Definition 2.1, yet creating an inter-agent cycle in
the graph (T, E ∪ Ê).
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Figure 3.1: The subgraph constructed for a forbidden pair {(x, y), (u, v)} ∈
C.

To reduce PWFP to CFD, we need to transform the graph G0 = (V, E0)
(the PWFP instance) to a tuple (T, G = (T,E)). Intuitively, this trans-
formation consists of two parts: an interesting part and a not-so-interesting
part. The not-so-interesting part entails (i) creating a single-task agent for
every vertex in V , and (ii) replicating those arcs that are not involved in any
forbidden pair into the CFD-graph.

The interesting part regards the transformation of forbidden pairs. We
encode each forbidden pair as a so-called path-blocking gadget, depicted in
Figure 3.1. For a certain forbidden pair cj = {(x, y), (u, v)} in the PWFP
problem, we may choose either, but not both of these arcs for creating a
path from s to t. Similarly, in creating an inter-agent cycle in CFD, we add
either planning arc (xj, yj), or (uj, vj), but not both. This mutual exlusion
is enforced by the arcs in (vj, xj) and (yj, uj): addition of e.g. planning arc
(xj, yj) creates a path vj − xj − yj − uj in Ei. Subsequently, (uj, vj) may no
longer be added, as it would create a local cycle.

To complete the transformation, we need to connect t to s. In this way,
we can equate the existence of an s− t path in PWFP to the existence of an
inter-agent cycle in CFD. However, we do not directly connect t to s, to avoid
instances with a trivial s − t path (using no arcs from forbidden pairs) to
result in a cyclic coordination instance. Instead, we place an agent between
s and t, that can connect t to s by adding a single planning arc. An example
of a transformation from PWFP to CFD is given in Figure 3.2.

Formally, the reduction of PWFP to CFD is defined as follows:

1. For i = 1, . . . n: Ti = {vi}; for j = 1, . . . , k (with k = |C|): Tn+j =
{xj, yj, uj, vj | {(x, y), (u, v)} ∈ C} and Tn+k+1 = {s0, t0}, where both

10



(b)(a)

C = {{(s, b), (a, t)}}

s

a

b

t

s1

a1

b1

t1

s0 t0

s

a

t

b

Figure 3.2: (a): A PWFP instance with a single forbidden pair and (b): the
corresponding coordination instance, in which we have depicted the set Êtot

of planning arcs by dotted arrows.

s0 and t0 do not occur in V . Obviously, T =
⋃n+k+1

i=1 Ti.

2. E is the smallest set of arcs satisfying the following conditions:

(a) For every arc e = {u, v} ∈ E0 not occurring in a pair of arcs in C,
e occurs in E.

(b) For every constraint-pair of arcs cj = {(x, y), (u, v)} ∈ C, E con-
tains the following arcs

(x, xj), (yj, y), (u, uj), (vj, v), (yj, uj), (vj, xj)

(See Figure 3.1 for an illustration).

(c) Finally, E contains the arcs (t, t0) and (s0, s).

Proposition 3.3. PWFP reduces to CFD.

To prove the correctness of the above reduction, we need to show three
things:

1. The transformation results in a correct instance of the CFD problem;
this means that G = (T,E) must be a dag.

2. A yes-instance of the PWFP problem maps to a yes-instance of the
CFD problem.
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3. A yes-instance of the CFD problem maps to a yes-instance of the PWFP
problem.

Proof. The graph G = ({Ti}i=n+k+1
i=1 , E) is acyclic: the subgraph of G re-

stricted to nodes mapped from vertices in V is clearly acyclic. The addi-
tional nodes {xj, uj}k

j=1 and the node t0 are clearly endpoint of paths; the
additional nodes {yj, vj}k

j=1 and the node s0 are clearly starting points of
paths. Hence, the additional nodes cannot contribute to a cycle.

A yes-certificate for a PWFP instance is given by a set of arcs E ′
0 =

{e1, . . . , em} such that each ej corresponds to one arc from the constraint-
pair cj ∈ C. Clearly, E ′

0 contains at most one arc from every pair in C. We

map the set E ′
0 to a yes-certificate Ê for CFD in the following manner: if

(x, y) from cj in E ′
0, then (xj, yj) ∈ Ê. We complete the set Ê by adding arc

(t0, s0). Clearly, Ê creates an inter-agent cycle in G: Ê creates a path from
s to t, and a path from t to s, so we have a cycle.

For CFD, a yes-certificate Ê creates an inter-agent cycle in (T,E∪ Ê). It
is easily verified that any inter-agent cycle must include the arc (t0, s0) from
agent An+k+1. Thus, Ê ′ = Ê \ {(t0, s0)} creates a path from s to t in the
CFD-graph. The set Ê ′ can only map to a yes-certificate for PWFP. First,
note that only path-blocking-gadget agents are capable of adding planning
arcs (apart from agent An+k+1, of course). Second, each such an agent can
add at most one planning arc: either (xj, yj), or (uj, vj) (these are the only
planning arcs for one agent). Adding both would result in a cyclic local
plan, which is not allowed. Thus, Ê ′ maps to a yes-certificate for the PWFP
instance, since an s− t path can be created using at most one arc from every
forbidden path.

Corollary 3.4. The Coordination Verification Problem is co-NP-complete

Proof. Because of Proposition 3.1, CVP is in co-NP; because of the fact
that its complement CFD is NP-hard, according to Proposition 3.3, CVP is
co-NP-complete.

12



Chapter 4

Complexity of the
Coordination Problem

A solution ∆ of a CP instance (T, G) is a cardinal-minimal set ∆ of additional
arcs that is sufficient to guarantee feasibility of the joint plan given arbitrary,
individually feasible plans. Given a coordination instance I and an integer
K ≥ 0, the coordination problem asks for the existence of a solution ∆ of
size at most K.1 In this section, we will show that for arbitrary values of
K > 0, we are faced with a Σp

2-complete problem. To prove this, we need to
introduce the following quantified version of the PWFP problem.

Definition 4.1 (∃∀¬PWFP). Given a PWFP instance (G0 = (V, E0), C, s, t),
and a partitioning {C1, C2} of C, the ∃∀¬PWFP problem is to find an ex-
clusive choice from C1, i.e., a set X1 that contains exactly one arc from
every pair of forbidden pairs in C1, such that for every exclusive choice
X2 from C2, there does not exist a path from s to t in the set of arcs
E ′

0 = (E0 \ C) ∪X1 ∪X2.
2

We use the complement of the PWFP problem, in order to be able to
relate a coordination set — ensuring that no inter-agent cycles can exist —
to a solution for ∃∀¬PWFP that ensures that no s− t path can be formed.

Showing that ∃∀¬PWFP is Σp
2-complete is straightforward using a reduc-

tion from the quantified satisfiability problem QSAT2 that slightly adapts a

1Note that in case K = 0, this problem equals the CVP problem.
2Here, E0 \ C is a shorthand for the set of arcs from E0 that do not occur in any

forbidden pair.
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standard reduction from 3-SAT to PWFP (cf. [6]).

Proposition 4.2. The coordination problem is in Σp
2.

Proof. To see that the coordination problem is in Σp
2, take a coordination

instance (T, G) and a K > 0. Nondeterministically, guess a set of arcs
∆ = ∆1 ∪ · · · ∪∆n and verify whether: (i) |∆| ≤ K, (ii) each (Ti, Ei ∪∆i)
is acyclic, and (iii) (T, (T,E ∪ ∆)) is a yes-instance of the CVP problem.
The first two verifications can be done in polynomial time, while the last
verification requires the consultation of an NP-oracle. Hence, the problem is
in Σp

2.

To prove that coordination is also Σp
2-hard, we will reduce ∃∀¬PWFP to

the coordination problem. Intuitively, the reduction consists of three parts,
two of which are interesting and one that is not. The non-interesting part
is the same as the trivial part for the previous reduction, i.e., it consists
of replicating vertices and non-interesting arcs. The first interesting part is
also the same as the interesting part of the previous reduction: for every
forbidden pair in C2, we create the path-blocking gadget of Figure 3.1. The
second interesting part is the transformation of forbidden pairs in C1. For
this, we introduce the so-called forced-choice gadget, which extends the path-
blocking gadget.

The idea behind the reduction is to link the finding of a coordination set
to the finding of an exclusive choice for C1. That is, if we have found a coor-
dination set — which means that whatever planning arcs the agents might
add, no inter-agent cycle can be created — then we should automatically
have an exclusive choice for C1 such that no path from s to t can be found
— whatever exclusive choices we come up with for C2.

The forced-choice gadget (Figure 4.1) forces a coordination set to be con-
structed by adding only constraints within the forced-choice-gadget agents
(‘C1-agents’). This is accomplished by introducing two potential paths from
s to t through each C1-agent: if the agent adds either planning arc (aj, bj) or
planning arc (cj, dj), a path from s to t is created, and, since we connect t to
s, an inter-agent cycle is created. The forced-choice gadget allows both these
potential paths to be broken by adding a single constraint: if either (xj, yj)
or (uj, vj) is added, then neither (aj, bj) nor (cj, dj) can be added without
creating a local cycle.

14
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aj bj

cj dj

vj
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Figure 4.1: The subgraph containing a forced-choice gadget, constructed for
a forbidden pair cj = {(xj, yj), (uj, vj)} ∈ C1.

Finally, we have to slightly alter the agent connecting t to s for this reduc-
tion. Since all inter-agent cycles pass through the agent connecting t to s, a
coordination set can be found simply by ‘blocking’ this agent. Therefore, we
ensure that this agent has K + 1 planning arcs to choose from in connecting
t to s; breaking them all would require K + 1 constraints, while we are only
allowed to find a coordination set of size K.

Specifically, the reduction is specified as follows:

1. For every vi ∈ V , Ti = {vi}. For every pair ({x, y}, {u, v}) occurring in
C, Tn+j contains the additional nodes xj, yj, uj, vj. Moreover, for every
pair ({x, y}, {u, v}) occurring in C1, Tn+j contains four additional nodes
(tasks): aj, bj, cj and dj. Finally, Tn+m+1 (m = |C|) contains the node
s0, and the K + 1 (K = |C1|) nodes t0, . . . , tk.

2. The set of arcs E contains the following elements:

(a) For every arc e = {u, v} ∈ E0 not occurring in a pair of arcs in C,
e occurs in E;

(b) For every constraint-pair of arcs cj = {(x, y), (u, v)} ∈ C, E con-
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tains the following arcs

(x, xj), (yj, y), (u, uj), (vj, v), (yj, uj), (vj, xj)

(c) For every pair of arcs {(x, y), (u, v)} ∈ C1, E contains the follow-
ing additional arcs:

(vj, aj), (vj, cj), (yj, aj), (yj, cj), (bj, xj), (bj, uj)

(dj, xj), (dj, uj), (s, aj), (s, cj), (bj, t), (dj, t)

(d) Finally, E contains the arcs {(t, t0), . . . , (t, tk)} and (s0, s).

Proposition 4.3. ∃∀¬PWFP reduces to CP.

Again, we need to prove:

1. The transformation results in a correct instance of the CP problem;
this means that G = (T,E) must be a dag.

2. A yes-instance of the ∃∀¬PWFP problem maps to a yes-instance of the
CP problem.

3. A yes-instance of the CP problem maps to a yes-instance of the ∃∀¬PWFP
problem.

Proof. To understand that the transformation results in an acyclic graph,
note that all additional nodes in the CP instance either have only incoming
arcs, or only outgoing arcs. Hence, these new nodes cannot introduce a cycle.

A yes-certificate for ∃∀¬PWFP consists of an exclusive choice X1 for
C1. We can directly map X1 to a yes-certificate ∆ for CP: (x, y) ∈ X1 →
(xj, yj) ∈ ∆. To verify that ∆ coordinates the CP instance, first note that
any possible inter-agent cycle must include a path from s to t, because of
the way the transformation works. Second, note that after adding ∆ to the
CP-instance, the following agents still have the capability to add planning
arcs: agent An+m+1 (m = |C|) can add the arcs {(t0, s0), . . . , (tk, s0)} (each
of which effectively creates a path from t to s), and the agents corresponding
to a C2 constraint pair can add exactly one planning arc, from a choice of
two: agent An+j can either add (xj, yj), or (uj, vj).
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Clearly, the set of possible combinations of planning arcs for the C2-
agents corresponds to the set of all possible exclusive choices X2 for C2.
Consequently, since in the ∃∀¬PWFP instance there does not exist an exlu-
sive choice X2 that creates a path from s to t (given X1), there does not exist
a set of planning arcs in the CP instance connecting s to t. Hence, ∆ is a
coordination set.

We must show that any coordination set ∆ directly maps to an exclusive
choice X1 for C1. There are three types of agents that are capable of adding
constraints to ∆:

1. The agent An+m+1: every potential inter-agent cycle must pass through
this agent, since it connects t to s. Hence, we can coordinate the
instance by ‘blocking’ this agent. However, that would take K + 1
constraints, since agent An+m+1 can add K + 1 planning arcs that
would connect s to t.

2. The C1-agents: the forced-choice gadget enables two direct paths from s
to t, either by adding planning arc (aj, bj) or by adding (cj, dj). Adding
either (xj, yj) or (uj, vj) blocks both these direct paths.

3. The C2-agents; clearly though, the C2-agents cannot break the direct
paths from s to t through the C1-agents.

Hence, a coordination set must consist of arcs from C1-agents, exactly one per
agent, since we have K C1-agents, and we are allowed to use K constraints.

It is easy to see that a coordination set indeed maps to an exclusive
choice X1 solving the PWFP instance: note that in the coordinated CP
instance, agent An+m+1 is unconstrained, allowing it to add planning arcs
connecting t to s. If other agents (i.e, C2-agents, since these are the only
other agents capable of adding planning arcs) would be able to add planning
arcs connecting s to t, then it would be possible to create an inter-agent
cycle. This is not possible, however, since ∆ is a coordination set. Hence, no
path can be created from s to t, and consequently, X1 is a yes-certificate for
the ∃∀¬PWFP instance.
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Chapter 5

Coordination with Simultaneity
Constraints

So far in our analysis of the pre-planning coordination problem, we have
considered only precedence constraints between tasks. Precedence constraints
naturally lend themselves to modeling situations where execution of one task
is a pre-requisite for execution of another task. Another common type of
dependency is that of resource contention between tasks, e.g. if two tasks
require the same tool, space, or other resource to be performed. In our
task-oriented framework, we can model resource conflicts using simultaneity
constraints.1

The complexity of the coordination problem increases from Σp
2-complete

to Πp
3-complete if we allow simultaneity constraints in addition to precedence

constraints. There exists a simultaneity constraint between two tasks t and
t′, denoted by t ./ t′, if either t ≺ t′ or t′ ≺ t must hold. We can now specify
a coordination instance as a tuple (T,≺, ./), where T and ≺ have their usual
meaning, and ./ ⊆ (T × T ) is a set of simultaneity constraints. We say that
a set ≺./ minimally satisfies ./ if (i) for each constraint t ./ t′ in ./, exactly
one of the two precedences (t ≺ t′) and (t′ ≺ t) is added to ≺./, and (ii) no
other precedence constraints are added to (the transitive reduction of) ≺./.

1More specifically, we can model contention over a non-consumable resource between
two tasks; simultaneity constraints do not allow modeling of contention over consumable
resources such as money.
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We now formulate the following coordination problem:

Definition 5.1 (Coordination Problem (∀-version)). Given a coordi-
nation instance (T,≺, ./) and an integer K ∈ Z+, the ∀CP problem is: Does
it hold for all instances (T,≺′, ∅) where ≺′=≺ ∪ ≺./ is a partial order and
≺./ minimally satisfies ./, that there exist a set ∆ =

⋃n
i=1 ∆i of precedence

constraints with ∆i ⊆ Ti × Ti such that:

1. |∆| ≤ K,

2. each (Ti,≺′
i ∪∆i) is acyclic, and

3. for all sets ≺̂′ =
⋃n

i=1 ≺̂′
i: if (Ti,≺′

i ∪∆i ∪ ≺̂′
i) is acyclic and satisfies

(Ti,≺i, ./i ) then (T,≺′ ∪∆ ∪ ≺̂′) is acyclic.

This definition of the coordination problem asks for a minimal set of
additional precedence constraints that ensures that agents can plan indepen-
dently of each other, irrespective of how the set of simultaneity constraints
is satisfied (i.e., for every (t, t′) ∈ ./, either t ≺ t′, or t′ ≺ t must be chosen).

The set of simultaneity constraints quite naturally translates to a set of
forbidden pairs, and so we can prove that ∀CP is Πp

3-complete simply by
extending the reduction from ∃∀¬PWFP to CP: first, we must define the
∀∃∀¬PWFP problem:

Definition 5.2 (∀∃∀¬PWFP). Given a PWFP instance (G0 = (V, E0), C, s, t),
and a partitioning {C1, C2, C3} of C, the ∀∃∀¬PWFP problem is: for every
exclusive choice X1, does there exist an exclusive choice X2 for C2, such that
for every exclusive choice X3 from C3, there does not exist a path from s to
t in the set of arcs E ′

0 = (E0 \ C) ∪X1 ∪X2 ∪X3.

Again, by using the reduction in [6], it is not hard to show that the
∀∃∀¬PWFP problem is Πp

3-complete.
For the reduction from ∀∃∀¬PWFP to ∀CP, we associate the first set

of forbidden pairs C1 with the set of simultaneity constraints. That is, we
construct the following gadget to model forbidden pairs in C1 (Figure 5.1):

The forbidden pair cj = {(x, y), (u, v)} is modeled in a gadget similar to
the path-blocking gadget of Figure 3.1, the difference being that now there
exists a simultaneity constraint xj ./ yj between xj and yj, and a simultaneity
constraint uj ./ vj between uj and vj.

Due to the precedence constraints vj ≺ xj and yj ≺ uj, if both xj ≺ yj

and uj ≺ vj were chosen to refine the simultaneity constraints, then a local
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Figure 5.1: For this gadget, ai ./ bi may be refined to ai ≺ bi; ci ./ di may
be refined to di ≺ ci, but not both.

cycle would result. Thus, either xj ≺ yj, or uj ≺ vj may be chosen, but not
both. Hence, the gadget of Figure 5.1 successfully models a forbidden pair.
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Chapter 6

Subclasses of Coordination in
NP

We have not found any non-trivial coordination instances in P, but we can
identify structural characteristics of a coordination instance without which
the coordination problem is in NP, and coordination verification in P.

Note that, intuitively, the difficulty with verifying a coordination set ∆ is
that we have to verify, for a possibly exponential number of sets of planning
arcs Ê, whether E ∪∆ ∪ Ê is acyclic if, for all i = 1, . . . , n, Ei ∪∆i ∪ Êi is
acyclic.

In this section, we identify a class of coordination instances for which, in
order to solve the coordination verification problem, we merely have to check
whether E ∪∆ ∪ Êtot contains no inter-agent cycles. Clearly, this check can
be performed in polynomial time, so CVP is in P for these instances and,
consequently, coordination itself is in NP.

Definition 6.1 (Local Planning Cycle). A Local Planning Cycle, abbre-
viated as locplan-cycle, for agent Ai is an intra-agent cycle C ⊆ (Êi ∪ Ei),
such that C ∩ Êi 6= ∅ and C ∩ Ei 6= ∅.

Proposition 6.2. Let I = (T, G = (T,E) ) be a coordination instance such
that its coordination graph contains no locplan-cycles, then the following two
assertions are equivalent:

1. The instance I is coordinated.

2. The coordination graph contains no inter-agent cycles.

21



Proof.

(1: instance coordinated → no inter-agent cycles)
Suppose on the contrary that the instance is coordinated, yet the co-
ordination graph still contains an inter-agent cycle C.

The fact that I is coordinated means that there does not exist a set
Ê =

⋃n
i=1 Êi, Ê ⊆ Êtot, such that (i) for all i = 1, . . . , n :≺i ∪ Êi is

acyclic, while (ii) (E ∪ Ê) contains a cycle. Hence, the presence of the
inter-agent cycle C implies that if we choose Ê = Êtot ∩ C, then there
must be at least one agent for which ≺i ∪ Êi contains a cycle C ′.

It follows almost immediately that C ′ is a locplan-cycle:

• C ′ cannot consist exclusively of arcs in ≺i, because ≺ is acyclic;

• C ′ cannot consist exclusively of arcs from Êi, otherwise C would
not be an elementary cycle: if all arcs in C ′ are also in C, then C
is not elementary.

The presence of the locplan-cycle C ′ is a contradiction.

(2: no inter-agent cycle → instance coordinated)
If the coordination graph contains no inter-agent cycle, this clearly it is
impossible for agents to add planning arcs Ê ⊆ Êtot that would lead to
a cycle in the joint plan involving more than one agent. Consequently,
the instance is coordinated.

We cannot directly claim that if an instance contains no locplan-cycle,
then it is in NP. We must also require that it is not possible that after
adding some arcs ∆ to ≺i (e.g., for coordination purposes), ≺i ∪ ∆ ∪ Êi

contains a locplan-cycle (Êtot defined with regard to the precedence relation
≺ ∪ ∆). In other words, the coordination instance must not be refinable to
a coordination instance that contains a locplan-cycle.

Proposition 6.3. Let I = (T, (T,E) ) be a coordination instance that cannot
be refined to contain a locplan-cycle, i.e., there exists no set of additional
constraints ∆ =

⋃n
i=1 ∆i, such that:

1. ∆i ⊆ (Ti × Ti),
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2. ≺i ∪ ∆i is acyclic, and

3. the coordination graph contains a locplan-cycle.

Then I is in NP.

Proof. Let ∆ be a solution for I, i.e., I ′ = (T, (T,E ∪∆) ) is a coordinated
instance. Verifying that ∆ is solution for I can be done by verifying that
the coordination graph contains no inter-agent cycle, according to Proposi-
tion 6.2. To prove that I is in NP, we need to show that this check can be
performed in polynomial time.

Consider the subset feedback arc set problem, which is defined as follows:

Given a tuple ISFAS = (V, E0, X), with (V, E0) a directed graph
and X ⊆ E0, find a minimum subset F ⊆ E0, such that F con-
tains at least one arc from every directed cycle in (V, E0) that
also intersects X.

The set of inter-agent cycles in the coordination graph is the set of cycles
intersecting INTER, so we can choose X = INTER.

As SFAS is in NP1, we can verify in polynomial time that F = ∅ is a
subset feedback arc set for the coordination graph of I ′ = (T, E ∪∆). This
implies that we can verify in polynomial time that the coordination graph of
I ′ contains no inter-agent cycles.

At the moment, we do not yet know if we can verify, in polynomial time,
whether an arbitrary coordination instance can contain locplan-cycles, i.e.,
whether Proposition 6.3 applies. However, even if such a check would require
exponential time, Proposition 6.3 can still be of value if we can prove that
a certain class of instances cannot contain locplan-cycles. For instance, in
the following two corollaries, we identify classes of coordination instances
that are in NP, on account of the fact that these instances cannot contain a
locplan-cycle.

Corollary 6.4. The set of coordination instances for which each agent has
either at most one task in T in, or at most one task in T out, is in NP.

1The decision variant of SFAS is in NP, SFAS itself is in NPO.
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Proof. We will prove that we cannot form a locplan-cycle. Let C be an inter-
agent cycle, let Êi = Êtot ∩ Ti × Ti, and let Êi(C) be the intersection of C
with Êi.

For this type of coordination instance, every arc in Êi has precisely one
task (node) in common: if, for instance, an agent Ai has exactly one task t
in T in, then every arc in Êi has starting vertex t. Hence, C cannot be an
elementary inter-agent cycle in case Êi(C) contains more than one arc.

In case Êi(C) is a single arc e, then it cannot create a locplan cycle:
suppose on the contrary that there is a locplan cycle C ′ with e the only arc
from Êi. This implies (ran(e), dom(e)) ∈ E+, and thus e ∈ [E−1]+. But then
e cannot be in Êtot.

Corollary 6.5. The set of coordination instances in which for all agents Ai,
the sets T in ∩ Ti and T out ∩ Ti are totally ordered, is in NP.

Proof. Let C be an inter-agent cycle, and suppose on the contrary that it
is possible that C induces a locplan-cycle C ′ in some agent Ai. Let Êi =
Êtot ∩ Ti × Ti, and let Êi(C) be the intersection of C (and C ′) with Êi.

From the proof Corollary 6.4, we know that C ′ must contain at least two
planning arcs. If we denote C ′ = {e1, . . . , em}, then let ej be the first arc in

Êi(C) and let ek be the last arc in Êi(C) (first and last defined in terms of
the indices i of arcs ei in C ′).

We have (ran(ek), dom(ej)) ∈ E+, since all arcs from ek . . . em to e1 . . . ej

are in E. However, we also have (dom(ej), dom(ek)) ∈ E+, because all arcs
in T in are totally ordered. Together, this implies (ran(ek), dom(ek)) ∈ E+.
This, however, means that ek can not be in Êi.
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Chapter 7

Approximability of the
Coordination Problem

In this section, we will show that the coordination problem is APX-hard.
We do this by reducing the APX-hard problem Feedback Vertex Set (FVS)
to the coordination problem. Furthermore, this reduction shows that it is
likely that the coordination problem is outside APX, that is, it is unlikely
that there exist constant-ratio approximations for the coordination problem.
If there did exist constant-ratio approximations for CP, then the following
reduction would immediately yield a constant-ratio approximation for FVS;
however, despite much research effort, the best known approximations for
FVS are O(log |V | log log |V |) [4, 3].

Although slightly disappointing, it is of course not surpsrising that coordi-
nation is APX-hard, as it is outside NPO. However, the reduction will show
that even for severly restricted coordination instances, the APX-hardness
result holds. In fact, we reduce the FVS problem to coordination instances
where agents have at most two tasks. Due to Proposition 6.2, these instances
are clearly in NP, yet they are still APX-hard.

The feedback vertex set problem is defined as follows:

Definition 7.1. The Feedback Vertex Set problem is: given a directed G0 =
(V, E0) and integer K, find a subset of vertices F ⊆ V such that F contains
at least one vertex for every directed cycle in G, and |F | ≤ K.

To reduce FVS to CP, we split each vertex up into two vertices — one
vertex incident on all incoming arcs, the other incident on all outgoing arcs
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— and create an agent for those two tasks. The reduction is illustrated in
Figure 7.1.

a2

a1

b1
b2

c1

c2

d1
d2

e1e2

(b)(a)

a

b

c

d

e

Figure 7.1: (a) an FVS instance and (b) its corresponding CP instance,
coordinated by adding constraint (d2, d1).

More formally, given a FVS instance G0 = (V, E0), we obtain a CP in-
stance (T, G = (T,E)) by the following transformation:

1. For every vj ∈ V , we construct the agent Aj, having set of tasks Tj =
{tij, toj}.

2. For every (vj, vk) ∈ E0, E contains the arc (toj , t
i
k).

The correspondence between a feedback arc set and a coordination set is
given by:

vj ∈ F ↔ (toj , t
i
j) ∈ ∆

Proposition 7.2. The Feedback Vertex Set problem reduces to the coordina-
tion problem.

The correctness of Proposition 7.2 can be understood by noting that
a cycle in the FVS-instance maps to a ‘potential cycle’ in the coordination
instance: that is, if all agents Aj along the cycle were to add the planning arc
(tij, t

o
j), then a cyclic joint plan would result. The transformed CP instance

is solved if and only if, for every such potential cycle, at least one agent
Aj intersected by the cycle adds the constraint (toj , t

i
j). Consequently, a

coordination set of cardinality K maps to a feedback vertex set of cardinality
K — and vice versa.

Corollary 7.3. The coordination problem is APX-hard.
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Chapter 8

Conclusions and Related Work

In this technical report we have analyzed the complexity of coordinating au-
tonomous agents that have to work together on a joint task. The coordination
problem, which is to find a minimal set of constraints to allow agents to plan
independently, turns out to be computanionally hard — it is Σp

2-complete.
We can identify coordination instances that are ‘only’ NP-complete, but NP-
complete is still regarded as intractable. Finally, the coordination problem
is hard to approximate, as it is unlikely that there exist constant-ratio ap-
proximations for the coordination problem.

These complexity results do not form a promising basis for constructing
efficient coordination algorithms. However, rather than giving in dejectedly,
we instead shift our attention to developing distributed coordination proto-
cols that allow agents to remain autonomous not only during planning, but
also in the coordination phase. Early versions of these coordination proto-
cols are presented in [8]. In [7], we advance these coordination protocols,
and discuss the kind of strategies that are open to agents. Also, we analyze
the efficiency of these coordination protocols not only in terms of planning
autonomy (i.e., in terms of the number of additional precedence constraints)
as we have done in this paper, but also in terms of plan cost.
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